9.2 and 9.3: Charging by friction, conduction, and induction. Insulators and conductors.

The title of this section refers to the 3 ways an object can become electrically charged.

We have had a little practice charging objects by(or)
The allows the transfer of electrons: the item
osing electrons becomes and the item gaining
electrons becomes
Charging by takes place when objects touch and an electric charge is transferred. Sound familiar? Yes, it is similar to friction.
Let's look at the example of a person walking across a carpet, couching a doorknob, and getting a shock.
The feet rubbing on the carpet is an example of charging by
Now the person is carrying an electric charge. When that person touches the doorknob, there is a
of electrons. This is charging by
Charging by occurs when an object is charged
without any direct contact. This explains why
dust particles areto your TV screen.

Our experiments showed us that a static charge	
doesn't always stay. A big part of this has to do with the	
the charge is being applied to. We can describe	
materials as either or	
An does not let electrons move about freely. This	
means that any electrons that are to it will stay	
where they are. Because of this, an can build up a	
detectable static charge are good insulators.	
A is the opposite allow electrons to flow freely. As a result, as soon as you add electrons to a	
conductor they evenly. This means that no matter how much you try to add (or take away) electrons, you	
can't build up a charge.	
An is a great way to observe electric charge.	
When an object is, it allows the charge to dissipate	
into the actual earth an object usually allows the	
charge to return to	